1)➤\(If\:A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right] ,then \\adj(adjA)\: is\: equal\: to\)
A.\(A\)
B.\(36A\)
C.\(6A\)
D.\(\frac{1}{6}A\)
👁Show Answer
Answer: Option C
Explanation:
\(\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A\)
\(\begin{aligned}
|A| &=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right|=6 \\
\therefore \quad \operatorname{adj}(\operatorname{adj} A) &=6^{3-2} \cdot A=6 A
\end{aligned}\)
2)➤\(If\:A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right],then\\ A^5 \: is\: equal \: to \)
A.\(A\)
B.\(identity\: matrix\)
C.\(null\: matrix\)
D.\(A^{-1}\)
👁Show Answer
Answer: Option D
Explanation:\(A=\left(\begin{array}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right)\)
\(A^{2}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)\)
\(A^{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 2 \\
1 & -1 & 1
\end{array}\right)\)
\(\text { and } \begin{aligned}
A^{3}=A \cdot A^{2} &=\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 2 \\
1 & -1 & 1
\end{array}\right) \\
&=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
A^{3} &=I
\end{aligned}\)
\(\text { and } \begin{aligned}
A^{3}=A \cdot A^{2} &=\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 2 \\
1 & -1 & 1
\end{array}\right) \\
&=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
A^{3} &=I
\end{aligned}\)
\(\begin{aligned}
A^{3} &=I \\
\therefore \quad A^{5}=A^{2} \cdot A^{3} &=A^{2} \cdot I \\
&=A^{2}\left(A A^{-1}\right) \\
&=A^{3} \cdot A^{-1} \\
&=I \cdot A^{-1} \\
\therefore \quad A^{5} &=A^{-1}
\end{aligned}\)
3)➤\(B=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\) \(and\:
A\: be\: 2×2 \: matrix \: satisfying \\ {(A^T)}^{-1}=A.If X=AB{A}^T,\:then \\A^TX^{2021}A \:is \:equal\: to \)
A.\(\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\)
B.\(\left[\begin{array}{ll}1 & 2021 \\ 0 & 1\end{array}\right]\)
C.\(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
D.\(\left[\begin{array}{ll}1 & 4042 \\ 0 & 1\end{array}\right]\)
👁Show Answer
Answer: Option D
Explanation:
\(A^{T}\left(A^{T}\right)^{-1}=A^{T} \cdot A=I
A^{T} X A=A^{T}\left(A B A^{T}\right) A\\
=\left(A^{T} A\right) B\left(A^{T} A\right)=B\\
A^{T} X^{2} A=A^{T}\left(A B A^{T}\right)\left(A B A^{T}\right) A\\
=\left(A^{T} A\right) B\left(A^{T} A\right) B\left(A^{T} A\right)=B^{2}\\
Similarly,A^{T} X^{2021} A=B^{2021}\\
B=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\B^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right]\\
\begin{aligned}
B^{3} &=\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right] \\
B^{4} &=\left[\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 8 \\
0 & 1
\end{array}\right] \\
B^{n} &=\left[\begin{array}{cc}
1 & 2 n \\
0 & 1
\end{array}\right] \\
\therefore B^{2021} &=\left[\begin{array}{cc}
1 & 4042 \\
0 & 1
\end{array}\right]
\end{aligned}\)
4)➤\(If \:A\: is\: a\: 3 \times 3 \: matrix\: such\: that\\ |A|=27, adj A=k A^{T}, then\\ k^{2}-3 k+5\: is\: equal\: to\)
A.5
B.3
C.0
D.2
👁Show Answer
Answer: Option A
Explanation:
\(\operatorname{adj} A=k A^{T}\\
A\left|=k^{3}\right| A^{T} \mid\\
\Rightarrow \quad|A|^{2}=k^{3}|A|\\
\Rightarrow \quad|A|\left(|A|-k^{3}\right)=0,\\since \quad|A| \neq 0
\Rightarrow \quad k^{3}=|A|=27,\\\quad k=3
k^{2}-3 k+5=9-9+5=5\)
5)➤\(The \:parametric\: equations\: of \:the\\ parabola\:x^{2}-8 x+12 y+15=0
\:are\)
A.\(x=4+6t,y=\frac{1}{12}-3t^2\)
B. \(x=\frac{1}{12}-3t^2,y=4+6t\)
C. \(x=3t^2,y=6t\)
D. \(x=6t,y=3t^2\)
👁Show Answer
Answer: Option A
Explanation:\(x^{2}-8 x+12 y+15=0\)
\( (x-4)^{2}=-12y+1\)
\((x-4)^{2}=-4 \cdot 3 \cdot\left(y-\frac{1}{12}\right)\)
\(x-4=6 t,
y-\frac{1}{12}=-3 t^{2}\)
\(x=4+6 t, y=\frac{1}{12}-3 t^{2}\)
6)➤\(\lim _{x \rightarrow 0^{-}} \frac{\sqrt{\frac{1}{2}\left(1-\cos ^{2} x\right)}}{x}\)
A.\(\frac{1}{\sqrt2}\)
B.\(\frac{-1}{\sqrt2}\)
C.\(-1\)
D.\(does\: not \:exist\)
👁Show Answer
Answer: Option B
Explanation:
\(L=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{\frac{1}{2}\left(1-\cos ^{2} x\right)}}{x}\\
=\lim _{x \rightarrow 0^{-}} \frac{\frac{1}{\sqrt{2}} \sqrt{1-\left(1-\sin ^{2} x\right)}}{x}\\
=\lim _{x \rightarrow 0^{-}} \frac{1}{\sqrt{2}} \frac{|\sin x|}{x}=\frac{1}{\sqrt{2}} \lim _{x \rightarrow 0^{-}} \frac{-\sin x}{x}\\
=-\frac{1}{\sqrt{2}}\)
7)➤\(\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{3}}\)
A.\(1\)
B.\( 0\)
C.\(-1\)
D.\(Does\: not\: exist\)
👁Show Answer
Answer: Option A
Explanation:
\(Let L=\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{3}}\left(\text { form } \frac{0}{0}\right)\\
=\lim _{x \rightarrow 0} \frac{2 \cos x-2 \cos 2 x}{3 x^{2}}\left(\text { form } \frac{0}{0}\right)\\(using\: L-Hospital\: rule)\)
\(=\lim _{x \rightarrow 0} \frac{-2 \sin x+4 \sin 2 x}{6 x}\left(\text { form } \frac{0}{0}\right)\\(using\: L-Hospital\: rule)\)
\(=\lim _{x \rightarrow 0} \frac{-2 \cos x+8 \cos 2 x}{6}=\frac{-2+8}{6}=1\)
8)➤\(\lim _{x \rightarrow \infty} \frac{3|x|^{3}-x^{2}+2|x|-5}{-5|x|^{3}+3 x^{2}-2|x|+7}\)
A.\(\frac{3}{5}\)
B.\(\frac{-5}{7}\)
C.\(\frac{5}{7}\)
D. \(\frac{-3}{5}\)
👁Show Answer
Answer: Option D
Explanation:
\(\text { } \begin{aligned}
&\lim _{x \rightarrow-\infty} \frac{3|x|^{3}-x^{2}+2|x|-5}{-5|x|^{3}+3 x^{2}-2|x|+7} \\
&x \rightarrow-\infty \Rightarrow|x|=-x \\
&\lim _{x \rightarrow-\infty} \frac{-3 x^{3}-x^{2}-2 x-5}{5 x^{3}+3 x^{2}+2 x+7}=-\frac{3}{5}
\end{aligned}\)
9)➤\(If\: the \:angles\: of \:a \triangle A B C
\:are\: in\: A.P\\ then\)
A.\(c^2=a^2+b^2-ab\)
B.\(a^2=b^2+c^2-ac\)
C.\(b^2=a^2+c^2-ac\)
D.\(b^2=a^2+c^2-ac\)
👁Show Answer
Answer: Option D
Explanation:
\(Let\: the \:angles\: of\: a \triangle A B C \:be
(a-d), a,(a+d)\\
\quad a-d+a+a+d=180^{\circ} \Rightarrow a=60^{\circ}\\
\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}\\
\Rightarrow \frac{1}{2}=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \Rightarrow b^{2}=a^{2}+c^{2}-a c\)
10)➤\(\text If\: the\: line\: y=mx+c\: is a \:tangent \:to\\ the\: circle\: x^2+y^2=16,\\ then\: m\: is\: equal\: to\)
A.\(\pm \frac{1}{4} \sqrt{C-16}\)
B.\(\pm \frac{1}{c} \sqrt{C^{2}+16}\)
C.\(\pm \frac{1}{4} \sqrt{C^{2}-16}\)
D.\(\pm \frac{1}{16} \sqrt{C^{2}-16}\)
👁Show Answer
Answer: Option C
Explanation:\(If\: y=mx+c\: is \:a \:tangent\: to\: the \:circle \\x^2+y^2=r^2\: then\\
C^{2}=r^{2}(1+ m^{2})\\
we\: have\: r^2=16,\\
m^{2}=\frac{C^{2}}{16}-1\\
m=\pm \frac{1}{4} \sqrt{C^{2}-16}\)
If you have any doubt,let me know.